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a b s t r a c t

We propose a strategy to design locally conservative finite-difference approximations of
convective derivatives for shock-free compressible flows with arbitrary order of accuracy,
that generalizes the approach of Ducros et al. (2000) [1], and that can be applied as a build-
ing block of low-dissipative, hybrid shock-capturing methods. The approximations stem
from application of standard central difference formulas to split forms of the convective
terms in the compressible Euler equations, which guarantee strong numerical stability
and (near) energy preservation in the inviscid limit. A convenient implementation of the
high-order fluxes is suggested, which guarantees improved computational efficiency over
existing methods. Numerical tests performed for isotropic turbulence at zero viscosity
show stability of schemes with order of accuracy up to ten, and effectiveness of convective
splitting of Kennedy and Gruber (2008) [2] in providing extra stability in the presence of
strong density variations. Numerical simulations of compressible turbulent boundary layer
flow indicate suitability of the method for non-uniform grids, and overall support superior
computational efficiency of high-order schemes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that, even in the absence of shock waves, straightforward central finite-difference approximations of
fluid flow equations exhibit instability when used at zero (or very small) viscosity, owing to accumulation of aliasing errors
resulting from discrete evaluation of the nonlinear convective terms [3]. Such deficiency can also be traced back to failure to
discretely preserve (even approximately) quadratic invariants associated with the conservation equations [4,5]. For example,
in the case of the Euler equations, kinetic energy is conserved in the incompressible limit in unbounded (or periodic) do-
mains. Several attempts have been made over the years to develop numerical methods for the incompressible and compress-
ible flow equations that replicate quadratic conservation properties in discrete sense. Most of the attempts appeared so far
are loosely based on the idea of recasting the convective derivatives in ‘skew-symmetric’ split form, with the objective to
minimize the aliasing error over other (analytically equivalent) forms [6], and to develop kinetic energy-consistent methods
in the incompressible [7] and in the compressible case [8]. Alternative strategies to enforce kinetic energy preservation in the
finite-volume framework without using splitting of the convective terms have been presented by Jameson [9], Subbareddy
and Candler [10]. While use of the split form of convective derivatives generally guarantees good stability properties, the
resulting discrete approximations cannot be generally cast in locally conservative form, i.e. as the difference of numerical
fluxes at successive intermediate nodes. Local conservation guarantees discrete global conservation of the linear invariants
(e.g. total mass, momentum and energy) through the telescopic property, and, most important, guarantees that the
. All rights reserved.
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Lax–Wendroff theorem [11] holds, ensuring convergence to a weak solution (provided the approximation itself converges).
Such property is extremely useful if the scheme has to be used as a building block of hybrid shock-capturing algorithms, as
shown by Larsson et al. [12], Johnsen et al. [13]. However, in that case, some artificial viscosity must be provided to inhibit
the onset of Gibbs oscillations and guarantee convergence to the physically relevant entropy solution. Ducros et al. [1] first
showed that (both in the finite-difference and in the finite-volume framework) numerical fluxes for convective terms in split
form can be found for explicit central approximations of derivatives with accuracy order up to six. Those authors were able
to confirm the stabilizing properties of convective splitting for various test cases, including steady and unsteady simulations.

The main objective of the present paper is to extend the analysis of Ducros et al. [1], and show that locally conservative
finite-difference approximations of split convective derivatives can be designed with arbitrary order of accuracy. More
important yet, we will show that the discrete approximations here proposed are substantially less computationally expen-
sive than the straightforward application of difference formulas to convective derivatives in split form. This issue is of great
practical importance, since incorporation of the present numerical fluxes into existing compressible flows solvers is extre-
mely simple and cost-effective.

The paper is organized as follows: in Section 2 we derive formulas for numerical fluxes of arbitrary order of accuracy; in
Section 3 we present numerical simulations of isotropic turbulence at infinite Reynolds number and of turbulent compress-
ible boundary layer flow. Concluding remarks are given in Section 4.

2. Conservative formulation of split convective terms

We look for accurate and stable approximations of convective derivatives of the type encountered in the compressible
Navier–Stokes equations, i.e.
@quku
@xk

; ð1Þ
where u stands for a generic transported scalar property, being unity for the continuity equation, ui (i = 1,2,3) for the
momentum equation, H = c/(c � 1)p/q + u2/2 for the total energy equation. Assuming for the sake of the analysis one space
dimension, and an equally spaced grid with nodes xj = j � h, we look for conservative finite-difference approximations of the
type
@quu
@x

����
x¼xj

� 1
h

f̂ jþ1=2 � f̂ j�1=2

� �
; ð2Þ
where f̂ jþ1=2 is the numerical flux.
The split form of convective derivatives is obtained expanding the left-hand-side of Eq. (2) as either
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It is worthwhile mentioning that, although the split convective forms (3) (introduced by Feiereisen et al. [14], and referred in
the following as FE-SF) and (4) (introduced by Blaisdell et al. [15], and referred to as BL-SF), are often labeled as ‘skew-sym-
metric’, this is not strictly correct in mathematical terms, since the internal product of the corresponding differential oper-
ators with u is not identically zero upon integration by parts, and therefore the integral of qu2 (i.e. the generalized energy) is
not preserved in time. In this respect we note [16] that energy consistency at the semi-discrete is only guaranteed when both
the continuity and the momentum equations are split according to (3), whereas the stabilization properties of the split form
(4) derive from minimization of the aliasing error [15]. Split forms of the convective operators that are skew-symmetric in
strict sense have been recently introduced by Morinishi [8].

Replacing the continuous derivative operators in (3) and (4) with their finite-difference counterparts yields
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where DS denotes the discrete approximation of the split convective derivative, Dfj stands for the discrete approximation of
the first derivative of f at node xj, and (f = qu,g = u) or (f = qu, g = u) in the case of the split form (3) or (4), respectively. Stan-
dard central difference approximations of the first derivative operator will be considered here,
Dfj ¼
XL

‘¼1

a‘D
‘fj; D‘fj ¼

1
h
ðfjþ‘ � fj�‘Þ; ð6Þ
where the coefficients a‘ are obtained by requiring either maximum formal order of accuracy of the approximation (i.e. 2L),
or that the discrete phase velocity approximates as closely as possible the exact one over an extended range of wavenum-
bers, yielding the class of the dispersion-relation-preserving (DRP) schemes [17].
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Ducros et al. [1] showed that, for L 6 3, insertion of (6) into (5) allows to cast the resulting convective derivative approx-
imation in conservation form. In the simplest case L = 1, corresponding to a second-order approximation, one easily obtains
f̂ jþ1=2 ¼
1
4
ðfj þ fjþ1Þðgj þ gjþ1Þ; ð7Þ
whereas a conservative approximation of the convective form (2) would yield
f̂ jþ1=2 ¼
1
2
ðfjgj þ fjþ1gjþ1Þ: ð8Þ
Explicit formulas for the numerical flux were also reported for L = 2, 3 in the original reference [1], corresponding to fourth-
and sixth-order approximations, respectively.

In the following we show that explicit formulas for the numerical flux do exist for arbitrary L, and suggest an efficient
implementation strategy. Indeed, considering a single term (D‘) in the expansion (6), insertion into (5) yields, after simple
developments
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where
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is a two-point, two-variable discrete averaging operator. Note that Eq. (9) is not automatically written in conservation form,
but it can be manipulated by summing and subtracting the term

P‘�1
m¼1ðff; gÞj�m;‘, to arrive to a locally conservative

formulation
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The overall numerical flux is then obtained by re-assembling the partial fluxes (11) as in (6),
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thus obtaining
f̂ jþ1=2 ¼ 2
XL

‘¼1

a‘
X‘�1

m¼0

ð gqu;uÞj�m;‘; ð13Þ
for the FE-SF split form, and
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for the BL-SF split form. It can be shown that the same formulas presented by Ducros et al. [1] are recovered from Eq. (14) for
L 6 3, using the values of the coefficients a‘ that maximize formal order of accuracy. We note that, besides providing explicit
formulas for numerical fluxes with arbitrary order of accuracy, Eqs. (13) and (14) also allow use of DRP-type derivative dis-
cretizations, that may prove useful for flows in which wave propagation phenomena are important.

Kennedy and Gruber [2] suggested that additional robustness for flows with strong density variations can be gained by
fully expanding the triple products that appear in (1), yielding the generalized split form
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hereafter referred to as KG-SF. We have found that conservative approximations of the split form (15) can be recovered only
under particular circumstances. Specifically, if a = b = 1/4, following the same approach as for the ‘standard’ split formula-
tions, we obtain
f̂ jþ1=2 ¼ 2
XL

‘¼1

a‘
X‘�1

m¼0

ð gq;u;uÞj�m;‘; ð16Þ
where the two-point, three-variable discrete averaging operator is defined as
ð gf; g; hÞj;‘ ¼ 1
8
ðfj þ fjþ‘Þðgj þ gjþ‘Þðhj þ hjþ‘Þ: ð17Þ
Comparison of this form of the numerical flux with the FE-SF and BL-SF split formulations shows that in this case the effect of
density variation is taken into account separately from the other two variables, and in this sense we will also refer to the KG-
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SF splitting, as well as to the conservative approximation (16), as ‘density-weighted’. As for the standard FE-SF split form, one
can easily prove that the KG-SF form (15) (with a = b = 1/4) yields semi-discrete preservation of kinetic energy when applied
to both the continuity and momentum equations.

It is important to note that the approximations (13), (14) and (16) can be efficiently implemented in a numerical code by
preliminarily evaluating and storing the averages (10) and (17), for all j, ‘ 6 L, and performing the linear combinations in-
volved in the formulas in a second step. The number of floating point operations (sums and products) per grid point needed
to evaluate a single convective derivative has been estimated for the various approximations considered so far, as explained
in Appendix A. The direct finite-difference approximation of the convective derivative (1), denoted as D-CONV, requires
2 + 2L operations per node; straightforward application of the discrete derivative operator (6) to the FE-SF and BL-SF split
forms (the resulting schemes are denoted as D-FE-SF and D-BL-SF, respectively), requires 6 + 6L operations; the approxima-
tion obtained applying (6) to the KG-SF split form (denoted as D-KG-SF) requires 20 + 14L floating point operations. With
regard to the conservative formulations of the split convective forms, the schemes defined by the numerical fluxes (13)
or (14) (denoted as C-FE-SF and C-BL-SF, respectively), require 2 + 7/2L + L2/2 operations; and the density-weighted approx-
imation with numerical flux given by (16) (denoted as C-KG-SF) requires 1 + 9/2L + L2/2 operations. These cost estimates are
displayed in Fig. 1, as a function of the stencil width (L). In the same figure we also report for reference purposes the cost
incurred with direct application of the conservative formulas of Ducros et al. [1]. Although the computational cost grows
quadratically with L for the conservative approximations, their cost is usually less than for the corresponding non-conser-
vative formulations, while being entirely equivalent. Specifically, the C-FE-SF and C-BL-SF schemes are less CPU-intensive
than their non-conservative counterpart for L 6 6, whereas C-KG-SF is faster than KG-SF for L 6 18. Furthermore, the present
implementation is found to be substantially more efficient than the original conservative formulation of Ducros et al. [1].
Finally, one should note that the C-KG-SF scheme is only marginally more expensive than C-FE-SF and C-BL-SF. These esti-
mates are consistent with the CPU time actually measured in numerical simulations, as also reported in Appendix A.

3. Numerical tests

3.1. Euler turbulence

To test the robustness of conservative approximations here proposed we have performed a series of numerical simula-
tions of (unforced) isotropic compressible turbulence in a (2p)3 periodic box at zero viscosity, as proposed by Honein and
Moin [16]. The Euler equations are solved in their standard form, including the conservation equations of mass, momentum,
and total energy. Time integration is performed by means of the third-order TVD Runge–Kutta scheme of Shu and Osher [18],
that is widely used in compressible flow solvers, with CFL number set to unity. The calculations are initialized with a field of
synthetic isotropic solenoidal turbulence with assigned wavenumber spectrum
Fig. 1.
convect
conserv
form (K
EðkÞ ¼ Aðk=k0Þ4 exp½�2ðk=k0Þ2�; ð18Þ
peaking at k0 = 6. The constant A is adjusted in such a way that the initial turbulent Mach number Mt ¼ ur:m:s:=�c (where the
prime indicates the r.m.s. value, and �c is the mean speed of sound) is set to a desired value. Fluctuations of temperature and
density are initially set to zero. Under such conditions an equipartition k2 energy spectrum quickly develops [19]. The large
energy content at the highest wavenumbers resolved on the computational grid poses a significant challenge to a numerical
algorithm, leading to nonlinear instability in the absence of mechanisms to control aliasing errors.

The results of a series of calculations performed on a 323 (uniformly spaced) grid, for initial turbulent Mach number
Mt0 = 0.07 and Mt0 = 0.3 are reported in Figs. 2 and 3, respectively. Data are shown for schemes with order of accuracy (cor-
responding to 2L) up to 10. The results obtained with CONV schemes are not displayed in the figures, since they invariably
lead to divergence of the solution on a time scale faster than one eddy turnover time for any order of accuracy.
Nominal cost (floating point operations/node) for convective derivative approximations with different stencil width. Dotted lines: baseline
ive approximation (D-CONV); dashed lines: standard (non-conservative) approximation of split convective derivatives (D-); solid lines:
ative approximation of split convective derivatives (C-); square symbols: standard split forms FE-SF and BL-SF; circles: density-weighted split
G-SF); diamonds: conservative formulation of Ducros et al. [1].



Fig. 2. Time evolution of total kinetic energy and r.m.s. density fluctuations for isotropic turbulence at zero viscosity (Mt0 = 0.07). s is the eddy turnover
time. (a) C-BL-SF scheme; (b) C-FE-SF scheme; (c) C-KG-SF scheme. Symbols: h, L = 1; M, L = 2; O, L = 3; }, L = 4; �, L = 5.
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The low Mach number test case is identical to that considered by Honein and Moin [16], who showed that the ‘exact’ solu-
tion (computed by means of a de-aliased spectral method), has nearly constant total kinetic energy ðT ¼

R
qu2 dVÞ, and the

r.m.s. density levels off to q0=q0=M2
t0
� 0:35, after an initial transient. Overall, schemes based on convective splitting do a

good job in preserving the initial kinetic energy, although they exhibit spurious drift of density fluctuations over long times
(not leading to divergence yet). This observation is more true for the higher-order schemes, that preserve kinetic energy
quite accurately, but exhibit excessive density fluctuations in the long run. On the other hand, second-order schemes show
substantial error in kinetic energy preservation and an odd initial transient, but also reduced growth of density fluctuations.
As expected, clear advantage in terms of energy preservation is observed for the C-FE-SF and C-KG-SF formulations, that yield
kinetic energy variations of 0.6% at most, over the monitored time interval.

Clear advantage of the density-weighted formulation is found in the simulations at Mt0 = 0.3, for which compressibility
plays a significant role. In this case energy conservation is not to be expected, since exchanges between kinetic and internal
energy modes are substantial. The results shown in Fig. 3 show that this is indeed the case. For this test case the standard
split forms BL-SF and FE-SF lead to divergence of the numerical solution, whereas the density-weighted formulation seems
to have a strong stabilizing effect, even though significant density drift is observed over long times. In this respect, it seems
that the fourth-order version of the C-KG-SF scheme (corresponding to L = 2) is capable to force the system towards a
(nearly) statistically steady asymptotic state.

We finally note that better results in physical terms can be obtained using schemes that exactly preserve energy in their
fully discrete formulation (see, e.g. [10]), or replacing the total energy equation with the internal energy or the entropy equa-
tions [16], or using suitable time integration schemes. However, such features are rather difficult to incorporate in existing
compressible flow codes, and are not addressed here, since our primary intent is to test robustness of the method.
3.2. DNS of compressible boundary layer

To challenge the capability of the present class of conservative schemes to cope with more realistic flow cases, and in par-
ticular with non-uniform meshes, we have performed the direct numerical simulation (DNS) of a spatially-developing com-
pressible turbulent boundary layer at M1 = 2, using a set-up very similar to that described in Pirozzoli et al. [22]. To
summarize, inlet turbulence is enforced using a recycling/rescaling procedure, periodicity is used in the spanwise direction,
purely nonreflecting boundary conditions are used at the outflow and at the top boundary, whereas unsteady characteristic
boundary conditions with fixed temperature [23] are specified at the bottom wall. The computational domain was selected
to be sufficiently wide (Lz/din = 5, where din is the boundary layer thickness at the inflow) to avoid the development of spu-
rious correlations in the spanwise direction. The convective fluxes are discretized by means of the sixth-order conservative
density-weighted split scheme (C-KG-SF). As pointed out by Ducros et al. [1], a fully conservative finite-difference discret-
ization using the split form of the convective derivatives is not possible on a mesh with variable spacing. We have then fol-
lowed the customary approach of using the chain rule to approximate spatial derivatives, and used conservative
discretization in computational space, that proves to be very effective in practice. With regard to the viscous terms, we have
used a non-conservative discretization, whereby the Laplacian operators are isolated, and both first and second derivatives
are discretized with sixth-order central approximations. This approach effectively guarantees that the highest resolvable



Fig. 3. Time evolution of total kinetic energy and r.m.s. density fluctuations for isotropic turbulence at zero viscosity (Mt0 = 0.3). s is the eddy turnover time.
(a) C-BL-SF scheme; (b) C-FE-SF scheme; (c) C-KG-SF scheme. Symbols: h, L = 1; M, L = 2; O, L = 3; }, L = 4; �, L = 5.

Fig. 4. Instantaneous Schlieren-like visualization of (portion of) boundary layer in x–y plane. Sixty-four levels of the variable exp(�0.5jrqjdin/q1) are
shown from 0 to 1, colors scale white to black. d is the local boundary layer thickness; din is the inflow boundary layer thickness (i.e. at x = 0).
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wavenumbers undergo accurate viscous damping [24]. Time integration is performed by means of a standard fourth-order
Runge–Kutta algorithm in this case.

At the station selected for collecting the flow statistics (x/din = 25), the Reynolds number based on the momentum thick-
ness is Reh ¼ 1573, and the friction Reynolds number is d+ = 356. The computational grid has uniform spacing in the stream-
wise and spanwise directions (in terms of wall units, Dx+ � Dz+ � 4.5), and it is stretched in the wall-normal direction
according to a hyperbolic sine distribution. The first point off the wall lies at a distance Dyþw ¼ 0:54, and the grid spacing
at the edge of the boundary layer is Dyþd ¼ 6:1. Exploratory calculations have shown that even with this very fine grid the
D-CONV scheme leads to numerical divergence in short time.

A small slice of the flow field in a wall-normal/longitudinal plane is shown in Fig. 4, in terms of a Schlieren-like represen-
tation, whereby the field of exp(�0.5jrqjdin/q1) is reported to emphasize small density variations. Assuming that density
can in a first approximation interpreted as a passive tracer in a weakly compressible flow, the figure highlights the occur-
rence of density fronts in the outer part of the boundary layer (associated with the outer layer ‘bulges’), that separate the
inner turbulence from the outside essentially irrotational main flow. Some ringing is observed near the edge of the boundary
layer, where the extremely sharp density gradients cannot be fully resolved.

The flow statistics, in terms of the mean velocity distribution and of the velocity fluctuation intensities are reported in
Fig. 5, at a station where boundary layer turbulence is fully developed. Note that, to compare to reference incompressible
experimental and DNS data, the Van Driest effective velocity is considered,
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Fig. 5. Distributions of: (a) Van Driest transformed mean streamwise velocity: (b) r.m.s. velocity fluctuations. Solid lines, present DNS; dashed lines: DNS of
Wu and Moin [20]; chained line, uþvd ¼ 5:1þ 1=0:41 log yþ . Symbols: �, streamwise component; M, wall-normal component; O, spanwise component; h,
experiments of Erm and Joubert [21].

Table 1
Grid parameters for turbulent boundary layer simulations.

Grid Dx+ Dz+ Dyþw Dyþd

DNS 4.4 4.5 0.54 6.1
A 19.0 10.5 0.88 15.7
B 28.1 15.9 0.94 28.1
C 46.4 25.5 1.05 44.2
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The distribution of the Van Driest velocity, reported in Fig. 5a, shows excellent collapse with the incompressible DNS data of
Wu and Moin [20] (having d+ � 400), highlighting the presence of a small logarithmic region. With regard to the statistics of
velocity fluctuations, reported in Fig. 5b, very good agreement with DNS and experiments is observed for the transverse com-
ponents, whereas the longitudinal component shows quantitative differences, especially in the inner layer, that are likely
related to the effect of compressibility [25]. In this respect we mention that the maximum turbulence Mach number across
the boundary layer is Mt � 0.24, for which compressibility effects are expected to be small, but not negligible.

Additional simulations of the same test case have been performed on under-resolved grids to assess: (i) the effect of the
type of convective splitting on robustness and accuracy; and (ii) the possible improvement of computational efficiency
brought by high-order discretizations.

With regard to the first item, a series of calculations have been performed by applying the C-BL-SF, C-FE-SF, and C-KG-SF
schemes (with L = 3) on a sequence of progressively coarsened grids having the same size as the DNS grid, and whose main
parameters are listed in Table 1. The distributions of the computed r.m.s. streamwise velocity fluctuations and spanwise
spectra (at y+ = 100) are reported in Figs. 6 and 7, respectively. Fig. 6 shows a non-monotone trend of r.m.s. velocity with
grid resolution, whereby marginally resolved grids (grid A) yield a decrease of the r.m.s. peak, whereas significantly un-
der-resolved grids yield an increase of the near-wall peak, and loss of kinetic energy in the outer layer. Overall, different
schemes yield similar results on the same grid, with a somewhat more accurate representation of the r.m.s. peak by the
C-BL-SF scheme. With regard to robustness, we find that the C-FE-BL scheme is much less robust than the other ones,
and leads to numerical divergence on grid C. Somewhat superior robustness of the C-KG-SF scheme over C-BL-SF has been
observed for further coarsened grids (compared to grid C), on which however the flow statistics are very inaccurate. Similar
considerations can be repeated for the velocity spectra of Fig. 7. In this case, under-resolution manifests itself in excessive
energy transfer from the large to the small scales of motion, with subsequent energy pile-up. Marginal differences are found
among different schemes, the C-BL-SF and C-KG-SF schemes yielding perhaps improved representation of the low
wavenumbers.

The effect of the order of accuracy has been studied by monitoring the performance of the C-BL-SF scheme on grid A for
various L. The main results of the study, in terms of r.m.s. velocity fluctuations and spectra, are reported in Fig. 8, where the
data are compared with the full DNS results. The figure shows that the second-order version of the scheme (corresponding to
L = 1) over-estimates the r.m.s. velocity peak, as well as the energy content at high wavenumbers. Schemes with order of
accuracy greater or equal to six (L P 3) yield adequate representation of the velocity fluctuations in the outer layer, and a
consistent improvement in the resolution of the higher spectral modes as L increases.

As proposed by Johnsen et al. [13], the comparison of spectra from under-resolved calculations and DNS, as reported in
Fig. 8b, can be used to gauge the computational efficiency of numerical methods in practical turbulent flow computations.
For that purpose, we define a spectral error as



Fig. 6. Distributions of r.m.s. streamwise velocity fluctuations as a function of wall distance for under-resolved simulations (grids a, b, c). Symbols: �, DNS;
h, C-BL-SF; }, C-FE-SF; �, C-KG-SF.

Fig. 7. Computed spanwise spectra of streamwise velocity fluctuations at y+ = 100 for under-resolved simulations (grids a, b, c). Symbols: �, DNS; h, C-BL-
SF; }, C-FE-SF; �, C-KG-SF.

Fig. 8. Distributions of r.m.s. streamwise velocity fluctuations (a) and spanwise spectra of streamwise velocity fluctuations (b) for under-resolved
simulations (grid A) with C-BL-SF schemes with different order of accuracy. Symbols: �, DNS; M, L = 1; O, L = 2; h, L = 3; }, L = 4; �, L = 5.

Fig. 9. Effective bandwidth (a) and computational cost (b) as a function of stencil half-width (L) for C-BL-SF scheme for various target errors. Symbols: h,
�e ¼ 0:25; M, �e ¼ 0:5; �, �e ¼ 1.

S. Pirozzoli / Journal of Computational Physics 229 (2010) 7180–7190 7187



7188 S. Pirozzoli / Journal of Computational Physics 229 (2010) 7180–7190
eðkzÞ ¼
Ezðu0; kzÞ

EDNS
z ðu0; kzÞ

� 1; ð20Þ
and introduce an ‘effective bandwidth’ as the wavenumber (say keff) where the error first becomes larger than a prescribed
threshold (say �e). The effective bandwidths associated with the C-BL-SF scheme at various L are shown in Fig. 9, for target
error levels �e ¼ 0:25;0:5;1. For that purpose, the first four Fourier modes in the spectra of Fig. 7 have been removed, since
they more sensitively depend upon the details of the computational arrangement, as well as on the exact placement of the
velocity probes (the probes used for spectral analysis are not placed at exactly the same height above the wall in the DNS and
in the under-resolved calculations). As expected, Fig. 9 shows that the effective bandwidth increases with the order of accu-
racy. The computational cost incurred to attain a prescribed accuracy is then estimated assuming that: (i) the number of grid
points required in each coordinate direction scales as 1/keff (so as the number of time steps); (ii) the cost per unit node is
given by the estimates of Appendix A. These assumptions result in the overall cost estimate C ¼ ð2þ 7=2Lþ L2=2Þ=k4

eff , dis-
played in Fig. 9b. The figure shows that, in general terms, higher-order schemes yield superior computational efficiency, i.e.
require less computational effort to achieve a given error level. However, the figure also suggest the occurrence of an ‘opti-
mal’ order of accuracy, resulting from the competing effects of cost overhead and improvement in resolution in wavenumber
space, that is a function of the target accuracy level. Specifically, schemes with high-order of accuracy (up to 10) may be
desirable if (relatively) strict error tolerances are set, whereas lower order schemes (down to six) do a good job if (relatively)
rough approximations as sought for.
4. Conclusions

A general framework for the design of conservative quasi-skew-symmetric schemes in shock-free flows has been estab-
lished. The study proves that convective derivatives cast in split form, and discretized with explicit finite-difference central
approximations with arbitrary accuracy can be properly recast in a locally conservative form, and therefore yield automatic
conservation of total mass, momentum, and energy. This property is particularly important if the schemes are to be used as
building blocks of hybrid shock-capturing algorithms, since the Lax–Wendroff theorem applies. Apparently, a conservative
formulation cannot be arrived at if the explicit central difference operators are replaced with compact approximations. In
that case, problems with conservation of linear invariants may be expected.

The specific conservative implementation proposed in the paper (as defined by the numerical fluxes (13), (14), (16)) guar-
antees significant improvement, in terms of computational efficiency, over straightforward discretization of split convective
operators. The present strategy also provides additional freedom over existing formulations [1] to encompass more general
convective splittings (such as the one proposed by Kennedy and Gruber [2]), as well as more general derivative approxima-
tions (e.g. DRP-type), which can be an advantage for calculations in which the far acoustic field is included.

Numerical experiments performed for Euler turbulence and for turbulent boundary layer flow show the robustness of
split convective discretizations with order of accuracy up to 10, and confirm that, although local conservation cannot be
proved on non-uniform grids, the algorithms work out very well in practice. The numerical experiments shows significant
advantage of the BL-SF and KG-SF (and especially of the latter) split convective formulations in severely under-resolved cal-
culations, when compressibility plays a significant role. Under-resolved boundary layer calculations also show the effective-
ness of schemes with high-order of accuracy in producing an extended range of well-resolved wavenumbers, and the
possible occurrence of an ‘optimal’ order of accuracy, that is dependent upon the prescribed error tolerance.
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Appendix A. Computational efficiency estimates

The computational effort involved in the discrete approximations of the convective derivatives is here estimated by
counting the overall number of floating point operations (f.p.o.), giving the same weight to sums and multiplications (no
division operation is strictly necessary).

Referring to the standard form of the convective operator (1), its discrete approximation (D-CONV) reads D (quu)j. The
evaluation of the triple products at the grid nodes requires 2N multiplications (where N is the number of nodes), and the
evaluation of the difference formulas (6) implies L multiplications and L sums per node (assuming the 1/h factor is absorbed
into the a‘), yielding a total of 2N(L + 1) f.p.o.

With regard to the non-conservative discretization of the split convective derivatives (D-FE-SF and D-BL-SF) (5), the com-
putational cost is estimated as follows: (i) pre-storage of f requires N multiplications; (ii) pre-storage of f � g requires N mul-
tiplications; (iii) the approximations of the derivatives of f, g, f � g according to (6) requires 3L multiplications and 3L sums per
node; (iv) the right-hand-side of (5) can be evaluated at the cost of 2 sums and 2 multiplications per node. The total number
of operations turns out to be N(6 + 6L).



Fig. 10. Measured CPU time for Euler turbulence calculations (compared with CPU time for the second-order D-CONV scheme). Dashed lines: standard
(non-conservative) approximation of split convective derivatives (D-); solid lines: conservative approximation of split convective derivatives (C-); square
symbols: standard split forms (FE-SF and BL-SF); circles: density-weighted split form (KG-SF).
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With regard to the conservative discretization of the split convective derivatives (C-FE-SF and C-BL-SF), we reason as fol-
lows: (i) pre-storage of f requires N multiplications; (ii) pre-storage of the averages (10) for all j, ‘ 6 L requires 2L sums and L
multiplication per node (assuming the factor 1/4 is absorbed into the a‘); (iii) evaluation of the linear combinations (13) or
(14) requires ‘ � 1 sums for each value of ‘, and L multiplications, for a total of

PL
‘¼1ð1þ ‘Þ ¼ LðLþ 1Þ=2 f.p.o. per node; (iv)

the evaluation of the conservative formulas (2) requires N sums (again assuming the 1/h factor is absorbed in the a‘). The
overall number of f.p.o. is therefore N(2 + 7/2L + L2/2).

Similar reasonings can also be applied to deduce cost estimates for the density-weighted convective derivative approx-
imations. Note that, since the derivatives are computed line-wise, there is no significant memory overhead associated with
pre-storage of the averages (10).

As a check of the computational cost estimates, we have measured the CPU time required to perform the Euler turbulence
simulations reported in Section 3.1. The results are reported in Fig. 10 (to be compared with Fig. 1), where all the CPU times
are normalized with respect to the second-order D-CONV scheme, and the same nomenclature is used as for Fig. 1. Although
additional operations are required by the Euler solver over the ones considered in the above cost estimates, the trend of the
measured CPU times is similar to the expectations.

Sample routines including efficient implementation of conservative split derivatives for the compressible Euler equations
are available by the author upon request.
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